Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Universe Today (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Scientists Develop a Novel Method for Detecting Supermassive Black Holes: Use Smaller Black Holes!

% of readers think this story is Fact. Add your two cents.


In 1974, astronomers Bruce Balick and Robert L. Brown discovered a powerful radio source at the center of the Milky Way galaxy. The source, Sagittarius A*, was subsequently revealed to be a supermassive black hole (SMBH) with a mass of over 4 million Suns. Since then, astronomers have determined that SMBHs reside at the center of all galaxies with highly active central regions known as active galactic nuclei (AGNs) or “quasars.” Despite all we’ve learned, the origin of these massive black holes remains one of the biggest mysteries in astronomy.

The most popular theories are that they may have formed when the Universe was still very young or have grown over time by consuming the matter around them (accretion) and through mergers with other black holes. In recent years, research has shown that when mergers between such massive objects occur, Gravitational Waves (GWs) are released. In a recent study, an international team of astrophysicists proposed a novel method for detecting pairs of SMBHs: analyzing gravitational waves generated by binaries of nearby small stellar black holes.

The study was led by Jakob Stegmann, a Research Fellow at the Max Planck Institute for Astrophysics (MPA) and the Gravity Exploration Institute at Cardiff University. He was joined by researchers from the Niels Bohr Institute, the Center for Theoretical Astrophysics and Cosmology at the University of Zurich (CTAC-UTZ), and the California Institute of Technology (Caltech). The study that describes the team’s findings, “Imprints of massive black-hole binaries on neighboring decihertz gravitational-wave sources,” recently appeared in Nature Astronomy.

First detected in 2015 by scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO), Gravitational Waves (GWs) are ripples in spacetime caused by the merger of massive objects like white dwarf stars and black holes. While multiple signals involving binary pairs of merging black holes have been detected, no GW events involving SMBHs have been detected because current Earth-based detectors are not sensitive to the very low frequency these events emit. Much like the issues facing ground-based observatories, scientists hope to remedy the situation by developing space-based instruments.

This includes the proposed Laser Interferometer Space Antenna (LISA), an ESA-led mission that is expected to launch sometime in 2035. Unfortunately, detecting mergers between the largest black holes in the Universe will still be impossible. However, Stegmann and his colleagues propose that binary SMBHs can be detected by analyzing the gravitational waves generated by smaller black hole binaries. Their proposed method leverages the subtle changes SMBHs cause to the GWs emitted by a pair of nearby smaller black holes.

In this respect, small black hole binaries work as a beacon, revealing the existence of larger pairs of merging black holes. As Stegmann explained in a recent UHZ press release:

“Our idea basically works like listening to a radio channel. We propose to use the signal from pairs of small black holes similar to how radio waves carry the signal. The supermassive black holes are the music that is encoded in the frequency modulation (FM) of the detected signal. The novel aspect of this idea is to utilize high frequencies that are easy to detect to probe lower frequencies that we are not sensitive to yet.”


Artist’s impression of the Laser Interferometer Space Antenna (LISA). Credit: ESA

However, the evidence that this proposed method offers would be indirect, coming from the background noise collectively generated by many distant binaries. Furthermore, it will require a deci-Hz gravitational-wave detector, which is far more sensitive than current instruments. For comparison, the LIGO detector measures GWs in the 7.0 kHz to 30 Hz range, whereas the Virgo Observatory can detect waves in the 10 Hz to 10000Hz range. By detecting the tiny modulations in signals from small black hole binaries, scientists could identify merging SMBHs ranging from 10 to 100 million Solar masses, even at vast distances.

As Lucio Mayer, a black hole theorist at the University of Zurich and a co-author of the study, added:

“As the path for the Laser Interferometer Space Antenna (LISA) is now set, after adoption by ESA last January, the community needs to evaluate the best strategy for the following generation of gravitational wave detectors, in particular which frequency range they should target – studies like this bring a strong motivation to prioritize a deci-Hz detector design.”

Further Reading: UZH, Nature Astronomy

The post Scientists Develop a Novel Method for Detecting Supermassive Black Holes: Use Smaller Black Holes! appeared first on Universe Today.


Source: https://www.universetoday.com/168030/scientists-develop-a-novel-method-for-detecting-supermassive-black-holes-use-smaller-black-holes/


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Lion’s Mane Mushroom Nootropic

Mushrooms are having a moment. One fabulous fungus in particular, lion’s mane, may help improve memory, depression and anxiety symptoms. They are also an excellent source of nutrients that show promise as a therapy for dementia, and other neurodegenerative diseases. If you’re living with anxiety or depression, you may be curious about all the therapy options out there — including the natural ones.Our Lion’s Mane WHOLE MIND Nootropic Blend has been formulated to utilize the potency of Lion’s mane but also include the benefits of four other Highly Beneficial Mushrooms. Synergistically, they work together to Build your health through improving cognitive function and immunity regardless of your age. Our Nootropic not only improves your Cognitive Function and Activates your Immune System, But it benefits growth of Essential Gut Flora, further enhancing your Vitality.


 


Our Formula includes: Lion’s Mane Mushrooms which Increase Brain Power through nerve growth, lessen anxiety, reduce depression, and improve concentration. Its an excellent adaptogen, promotes sleep and improves immunity.


Shiitake Mushrooms which Fight cancer cells and infectious disease, boost the immune system, promotes brain function, and serves as a source of B vitamins.


Maitake Mushrooms which regulate blood sugar levels of diabetics, reduce hypertension and boosts the immune system.


Reishi Mushrooms which Fight inflammation, liver disease, fatigue, tumor growth and cancer. They Improve skin disorders and soothes digestive problems, stomach ulcers and leaky gut syndrome.


Chaga Mushrooms which have anti-aging effects, boost immune function, improve stamina and athletic performance, even act as a natural aphrodisiac, fighting diabetes and improving liver function.


Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules Today. Be 100% Satisfied or Receive a Full Money Back Guarantee. Order Yours Today by Following This Link.

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

MOST RECENT
Load more ...

SignUp

Login

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.