Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Universe Today (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Asking the Big Question: Where Did Life Originate?

% of readers think this story is Fact. Add your two cents.


Where on Earth did life originate, and where else could it occur? A comprehensive answer is most likely a long way off. But it might depend on how many suitable sites for abiogenesis there are on different worlds.

We only have one data point for life: dear old Earth. Examining abiogenesis, the natural process where life originates from non-living matter, can’t be done by observing other places where it occurred. Instead, scientists use models to dig into the big question.

Manasvi Lingam is an astrobiologist at Florida Tech University. In new research, Lingam and his co-researchers examine the probability of life originating in different sites on Earth. The research is titled “A Bayesian Analysis of the Probability of the Origin of Life Per Site Conducive to Abiogenesis.” It’s published in the journal Astrobiology, and the other authors are Ruth Nichols and Amedeo Balbi.

“We can’t peer back in time. Sometimes you can arrive at answers just through very clever use of limited data… but there is a part that you’ll never know.”

Manasvi Lingam, Astrobiologist, Florida Tech University

A Bayesian Analysis uses existing knowledge—in this case, the appearance of life on Earth—to estimate how probable it is that the same thing will occur elsewhere. Disregarding panspermia, we know that life originated on Earth at least once. Scientists can use it to try to determine how probable it is that life arose elsewhere.

There are many roadblocks on our path to understanding the spontaneous appearance of life. “One of the foremost among these current limitations is our lack of conclusive knowledge regarding the minimal set of conditions necessary for engendering abiogenesis, as well as the absence of definitive data pinpointing the likely location(s) where this process took place,” the authors write.

But the fact that it did arise on Earth, at least once but possibly in multiple locations, is an information-rich fact. But the information doesn’t announce its presence. Scientists have to tease it out. “Nevertheless, the occurrence of abiogenesis on Earth still holds significant informative value,” the authors explain.

An image of Earth taken by the Galileo spacecraft in 1990. Even though we don't know how life started, scientists can use the fact that life exists to examine the probability. Image Credit: NASA/JPL
An image of Earth taken by the Galileo spacecraft in 1990. Even though we don’t know how life started, scientists can use the fact that life exists to examine the probability. Image Credit: NASA/JPL

In new research, Lingam and his co-researchers developed a model based on urable sites. Urable sites are those that are viable places where life could start. The results were surprising and counter-intuitive.

Urable sites are environments where we think life can arise. They include hydrothermal vents, impact sites, lakes and ponds, and natural atomic reactors like the one that existed in Gabon two billion years ago.

In this work, the researchers compiled a list of urable sites, and each type has a corresponding level of conduciveness for life to get going. They shaped their models according to two questions: on how many sites could life have originated on Earth, and what is the probability of life emerging for each one.

It’s critical to understand that this work can’t tell us how and where life originated. Instead, the goal was to understand how to interpret the models’ results.

In their simulations, the researchers considered three different scenarios, each with a different number of urable sites. One had only 10 urable sites, one had 1016 urable sites, and one had 1031 urable sites. They also worked with optimistic, pessimistic, and uninformative scenarios. The optimistic had a higher probability of life appearing per urable sites, the pessimistic had a lower probability, and uninformative means the results were just that.

Warm little ponds are one type of urable site. This artist's impression shows the early Earth, where the continental crust was below sea level, and the only exposed land was volcanic islands. On these islands, bombarded by lightning, gas from volcanoes could've formed increasingly complex molecules in little ponds. Eventually, a molecule capable of storing information, replicating it, and mutating randomly may have formed. As these islands were eroded away, these molecules could've been spread into the ocean. Image Credit: NASA
Warm little ponds are one type of urable site. This artist’s impression shows the early Earth, where the continental crust was below sea level, and the only exposed land was volcanic islands. On these islands, bombarded by lightning, gas from volcanoes could’ve formed increasingly complex molecules in little ponds. Eventually, a molecule capable of storing information, replicating it, and mutating randomly may have formed. As these islands were eroded away, these molecules could’ve been spread into the ocean. Image Credit: NASA

The researchers anticipated that a larger number of urable sites would mean a higher probability of life emerging. But to their surprise, the opposite was true. More sites meant a lower probability of life emerging, and fewer sites meant a higher probability.

“That’s the two situations that are here. One where there are lots of sites, but there’s very low probability [of life] per site. And the second where there are very few sites, but there’s a very high probability per site,” Lingam said in a press release.

“Normally ‘the more, the better’ is the attitude for many things in life,” Lingam says. “But more is not always better. If it’s fewer, but it’s the right kind of fewer, then that can actually be better.”

This means that in their model, where Earth had the fewest urable sites, the probability of life emerging on any single site is higher. When there are plentiful sites, the probability of life emerging on any one of them is lower.

This black smoker hydrothermal vent was discovered in the Atlantic Ocean in 1979. It's fueled from deep beneath the surface by magma that superheats the water. The plume carries minerals and other materials out to the sea. Vents like these are one type of urable site. Image Credit: USGS.
This black smoker hydrothermal vent was discovered in the Atlantic Ocean in 1979. It’s fueled from deep beneath the surface by magma that superheats the water. The plume carries minerals and other materials out to the sea. Vents like these are one type of urable site. Image Credit: USGS.

Though counterintuitive, Lingam says these results are valuable. There’s no consensus on what urable site life arose on, so different researchers can use them in their experiments to understand their own preferred environments in experiments. “Then they can do laboratory experiments, try to get a feel for how many trials might be needed to actually move to something like life,” Lingam says.

Even with all we don’t know about the origin of life, and even though these models can’t tell us how life arose, Lingam’s work can still help other researchers make progress.

“We can’t peer back in time,” Lingam says. “Sometimes you can arrive at answers just through very clever use of limited data… but there is a part that you’ll never know.”

The post Asking the Big Question: Where Did Life Originate? appeared first on Universe Today.


Source: https://www.universetoday.com/168344/asking-the-big-question-where-did-life-originate/


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.


Humic & Fulvic Liquid Trace Mineral Complex


HerbAnomic’s Humic and Fulvic Liquid Trace Mineral Complex is a revolutionary new Humic and Fulvic Acid Complex designed to support your body at the cellular level. Our product has been thoroughly tested by an ISO/IEC Certified Lab for toxins and Heavy metals as well as for trace mineral content. We KNOW we have NO lead, arsenic, mercury, aluminum etc. in our Formula.


This Humic & Fulvic Liquid Trace Mineral complex has high trace levels of naturally occurring Humic and Fulvic Acids as well as high trace levels of Zinc, Iron, Magnesium, Molybdenum, Potassium and more. There is a wide range of up to 70 trace minerals which occur naturally in our Complex at varying levels. We Choose to list the 8 substances which occur in higher trace levels on our supplement panel. We don’t claim a high number of minerals as other Humic and Fulvic Supplements do and leave you to guess which elements you’ll be getting.


Order Your Humic Fulvic for Your Family by Clicking on this Link, or the Banner Below.



Our Formula is an exceptional value compared to other Humic Fulvic Minerals because...


It’s OXYGENATED

It Always Tests at 9.5+ pH

Preservative and Chemical Free

Allergen Free

Comes From a Pure, Unpolluted, Organic Source

Is an Excellent Source for Trace Minerals

Is From Whole, Prehisoric Plant Based Origin Material With Ionic Minerals and Constituents

Highly Conductive/Full of Extra Electrons

Is a Full Spectrum Complex


Our Humic and Fulvic Liquid Trace Mineral Complex has Minerals, Amino Acids, Poly Electrolytes, Phytochemicals, Polyphenols, Bioflavonoids and Trace Vitamins included with the Humic and Fulvic Acid. Our Source material is high in these constituents, where other manufacturers use inferior materials.


Try Our Humic and Fulvic Liquid Trace Mineral Complex today. Be 100% Satisfied or Receive a Full Money Back Guarantee. Order Yours Today by Following This Link.

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

MOST RECENT
Load more ...

SignUp

Login

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.